Experimental evolution and phenotypic plasticity of hindlimb bones in high-activity house mice.

نویسندگان

  • Scott A Kelly
  • Polly P Czech
  • Jeffrey T Wight
  • Katie M Blank
  • Theodore Garland
چکیده

Studies of rodents have shown that both forced and voluntary chronic exercise cause increased hindlimb bone diameter, mass, and strength. Among species of mammals, "cursoriality" is generally associated with longer limbs as well as relative lengthening of distal limb segments, resulting in an increased metatarsal/femur (MT/F) ratio. Indeed, we show that phylogenetic analyses of previously published data indicate a positive correlation between body mass-corrected home range area and both hindlimb length and MT/F in a sample of 19 species of Carnivora, although only the former is statistically significant in a multiple regression. Therefore, we used an experimental evolution approach to test for possible adaptive changes (in response to selective breeding and/or chronic exercise) in hindlimb bones of four replicate lines of house mice bred for high voluntary wheel running (S lines) for 21 generations and in four nonselected control (C) lines. We examined femur, tibiafibula, and longest metatarsal of males housed either with or without wheel access for 2 months beginning at 25-28 days of age. As expected from previous studies, mice from S lines ran more than C (primarily because the former ran faster) and were smaller in body size (both mass and length). Wheel access reduced body mass (but not length) of both S and C mice. Analysis of covariance (ANCOVA) revealed that body mass was a statistically significant predictor of all bone measures except MT/F ratio; therefore, all results reported are from ANCOVAs. Bone lengths were not significantly affected by either linetype (S vs. C) or wheel access. However, with body mass as a covariate, S mice had significantly thicker femora and tibiafibulae, and wheel access also significantly increased diameters. Mice from S lines also had heavier feet than C, and wheel access increased both foot and tibiafibula mass. Thus, the directions of evolutionary and phenotypic adaptation are generally consistent. Additionally, S-line individuals with the mini-muscle phenotype (homozygous for a Mendelian recessive allele that halves hindlimb muscle mass [Garland et al., 2002, Evolution 56:1,267-1,275]) exhibited significantly longer and thinner femora and tibiafibulae, with no difference in bone masses. Two results were considered surprising. First, no differences were found in the MT/F ratio (the classic indicator of cursoriality). Second, we did not find a significant interaction between linetype and wheel access for any trait, despite the higher running rate of S mice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective breeding for high endurance running increases hindlimb symmetry.

Comparative studies provide correlational evidence of morphological adaptations for high locomotor performance, such as the classical indicators of cursoriality in mammals, long limbs and high metatarsal/femur ratios. More recently, enlarged femoral condyles have been suggested as an adaptation for high endurance running in the genus Homo. Asymmetry of locomotor appendages should adversely affe...

متن کامل

Phenotypic plasticity and experimental evolution.

Natural or artificial selection that favors higher values of a particular trait within a given population should engender an evolutionary response that increases the mean value of the trait. For this prediction to hold, the phenotypic variance of the trait must be caused in part by additive effects of alleles segregating in the population, and also the trait must not be too strongly genetically...

متن کامل

Dual hindlimb control elements in the Tbx4 gene and region-specific control of bone size in vertebrate limbs.

The Tbx4 transcription factor is crucial for normal hindlimb and vascular development, yet little is known about how its highly conserved expression patterns are generated. We have used comparative genomics and functional scanning in transgenic mice to identify a dispersed group of enhancers controlling Tbx4 expression in different tissues. Two independent enhancers control hindlimb expression,...

متن کامل

The phenotypic plasticity of the aquatic invertebrate Caenis latipennis in response to environmental conditions in the Kheirood Kenar River, Iran

Phenotypic plasticity is the capability of an organism to change its shape in response to the environmental condition. The present study aimed to investigate the phenotypic plasticity of the aquatic invertebrate Caenis latipennis using outline analysis. Samples were collected from up- and downstream of the Kheirood Kenar River, identified to the species level and photographed using a digital ca...

متن کامل

The effect of food type on phenotypic plasticity of sword tail, Xiphophurus helleri, during early ontogeny

Phenotypic plasticity is an important mechanism of phenotypic adaptation in response to environmental conditions. This study was conducted to investigate the effect of food type on the body shape of swordtail, Xiphoohurus helleri, during early development using geometric morphometric method. For this purpose, two treatments including feed by Artemia naupli and commercial Biomar diet were used i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of morphology

دوره 267 3  شماره 

صفحات  -

تاریخ انتشار 2006